Hyperspectral imaging using RGB color for foodborne pathogen detection
نویسندگان
چکیده
This paper reports the development of a spectral reconstruction technique for predicting hyperspectral images from RGB color images and classifying food-borne pathogens in agar plates using reconstructed hyperspectral images. The six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) grown on Rainbow agar plates were used for the study. A line-scan pushbroom hyperspectral imaging spectrometer was used to scan full reflectance spectra of pure non-O157 STEC cultures in the visible and near-infrared spectral range from 400 to 1000 nm. RGB color images were generated by simulation from hyperspectral images. Polynomial multivariate least-squares regression analysis was used to reconstruct hyperspectral images from RGB color images. The mean R-squared value for hyperspectral image reconstruction was ∼0.98 in the spectral range between 400 and 700 nm for linear, quadratic, and cubic polynomial regression models. The accuracy of the hyperspectral image classification algorithm based on k-nearest neighbors algorithm of principal component scores was validated to be 92% with the test set (99% with the original hyperspectral images). The results of the study suggested that color-based hyperspectral imaging would be feasible without much loss of prediction accuracy compared to true hyperspectral imaging. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.24.4.043008]
منابع مشابه
Classification of Salmonella Serotypes with Hyperspectral Microscope Imagery
Among serious foodborne outbreaks, Salmonella has the most infections and incidence cases. Because Salmonella is a leading cause of foodborne illness and a zoonotic agent capable of causing gastroenteritis and septicemia, Salmonella detection and identification has become an important subject of research for the poultry industry. Based on the numerous culture protocols to characterize Salmonell...
متن کاملFast and robust pushbroom hyperspectral imaging via DMD-based scanning
We describe a new pushbroom hyperspectral imaging device that has no macro moving part. The main components of the proposed hyperspectral imager are a digital micromirror device (DMD), a CMOS image sensor with no filter as the spectral sensor, a CMOS color (RGB) image sensor as the auxiliary image sensor, and a diffraction grating. Using the image sensor pair, the device can simultaneously capt...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملRGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setup and Imaging Protocols
Better understanding of plant root dynamics is essential to improve resource use efficiency of agricultural systems and increase the resistance of crop cultivars against environmental stresses. An experimental protocol is presented for RGB and hyperspectral imaging of root systems. The approach uses rhizoboxes where plants grow in natural soil over a longer time to observe fully developed root ...
متن کاملPredicting of the Quality Attributes of Orange Fruit Using Hyperspectral Images
Background: Hyperspectral image analysis is a fast and non-destructive technique that is being used to measure quality attributes of food products. This research investigated the feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS), pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes such as color components (L*, a*, b*)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Electronic Imaging
دوره 24 شماره
صفحات -
تاریخ انتشار 2015